Una Revisión Crítica de Literatura de Modelado Semántico de Contexto

Libia Denise Cangrejo Aljure, Tatiana Delgado Fernández, Néstor Eliecer Manosalva

Resumen


Objetivo. La investigación tuvo como propósito encontrar los pilares conceptuales, la distribución temporal y las escuelas más reconocidas de modelado de contexto semántico, los principales aportes de la comunidad internacional en las fases de su diseño y las herramientas semánticas más utilizadas en este ámbito. Diseño/Metodología/Enfoque. Se empleó una metodología de revisión sistemática de literatura, acotada a una ventana de tiempo entre 2005 y 2019,  que incluye las fases Planeación y Conducción, soportada en las bases de datos SCOPUS y ScienceDirect. Resultados/Discusión. Se identifican los principales elementos que conforman la base conceptual de los modelos de contexto que tienen enfoque semántico; así como, las tecnologías semánticas mayormente empleadas. Conclusiones. A través de esta investigación se revelan nuevas miradas al modelado de contexto basado en tecnologías semánticas, demostrándose la capacidad para reconocer las variables del entorno y propiciar una adaptación o reacción de las aplicaciones y la tecnología ubicua a tal situación en beneficio del usuario. Originalidad/Valor. Los resultados obtenidos se pueden utilizar para investigaciones y estudios de estados, posicionamiento y usabilidad de los conceptos asociados a modelado semántico de contexto.


Palabras clave


Modelo de contexto; semántica; sensibilidad al contexto; revisión sistemática

Texto completo:

PDF

Referencias


Ahmed, B., Abdelouahed, G., & Kazar, O. (2017). Semantic-based Approach to Context Management in Ubiquitous Environment. Procedia Computer Science, 109, 592–599. https://doi.org/10.1016/j.procs.2017.05.361

Ali, S., Khusro, S., Ullah, I., Khan, A., & Khan, I. (2017). SmartOntoSensor: Ontology for Semantic Interpretation of Smartphone Sensors Data for Context-Aware Applications. Journal of Sensors, 2017, 1–26. https://doi.org/10.1155/2017/8790198

Alti, A., & Laouamer, L. (2022). Agent-Based Autonomic Semantic Context-Aware Platform for Smart Health Monitoring and Disease Detection. The Computer Journal, 65(3), 736-755. https://doi.org/10.1093/comjnl/bxab075

Bakillah, M., Liang, S. H. L., Zipf, A., & Mostafavi, M. A. (2012). A dynamic and context-aware semantic mediation service for discovering and fusion of heterogeneous sensor data. Journal of Spatial Information Science, 6(6), Accepted, subject to final revisions. https://doi.org/10.5311/josis.v0i0.104

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., & Riboni, D. (2010). A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing, 6(2), 161–180. https://doi.org/10.1016/j.pmcj.2009.06.002

Biamino, G., & Cena, F. (2011). Social awareness and user modeling to improve objects intelligence. Proceedings - 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT 2011, 3, 118–121. https://doi.org/10.1109/WI-IAT.2011.260

Cabrera, O., Franch, X., & Marco, J. (2017a). 3LConOnt: a three-level ontology for context modelling in context-aware computing. Software and Systems Modeling, 1–34. https://doi.org/10.1007/s10270-017-0611-z

Caro, D. A. (2005). Revisiones sistemáticas de la literatura. Rev. Colombiana de Gastroenterología, 20(1), 60–69. https://doi.org/10.5944/educxx1.17.1.10708

Chaari, T., Ejigu, D., Laforest, F., & Scuturici, V.-M. (2006). Modeling and Using Context in Adapting Applications to Pervasive Environments. 2006 ACS/IEEE International Conference on Pervasive Services, 111–120. https://doi.org/10.1109/PERSER.2006.1652214

Da, K., Roose, P., Dalmau, M., Nevado, J., & Karchoud, R. (2014). Kali2Much, 25–30. https://doi.org/10.1145/2676743.2676748

Del Gaudio, D., Ariguib, B., Bartenbach, A., & Solakis, G. (2022, March). A live context model for semantic reasoning in IoT applications. In 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) (pp. 322-327). IEEE. https://doi.org/10.1109/PerComWorkshops53856.2022.976726 7

Fenza, G., Furno, D., & Loia, V. (2012). Hybrid approach for context-aware service discovery in healthcare domain. Journal of Computer and System Sciences, 78(4), 1232–1247. https://doi.org/10.1016/j.jcss.2011.10.011

Gandon, F. (2018). A survey of the first 20 years of research on semantic web and linked data. Ingenierie Des Systemes d’Information, 23(3–4), 11–56. https://doi.org/10.3166/ISI.23.3-4.11-56

Giustozzi, F., Saunier, J., & Zanni-Merk, C. (2018). Context Modeling for Industry 4.0: an Ontology-Based Proposal. Procedia Computer Science, 126, 675–684. https://doi.org/10.1016/j.procs.2018.08.001

Guermah, H., Fissaa, T., Hafiddi, H., Nassar, M., & Kriouile, A. (2013a). Context modeling and reasoning for building context aware services. Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA. https://doi.org/10.1109/AICCSA.2013.6616439

Guo, D., Wang, H., & Wang, M. (2021). Context-Aware Graph Inference with Knowledge Distillation for Visual Dialog. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3085755

Hervás, R. (2010). A Context Model based on Ontological Languages : a Proposal for Information Visualization. Computer, 16(12), 1539–1555. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-77957102473&partnerID=40&md5=59fcc2999e87ad4a22ed23f823a835fd

Hu, Bo, Wang, Z. X., & Dong, Q. C. (2013). A novel context-aware modeling and reasoning method based on OWL. Journal of Computers (Finland), 8(4), 943–950. https://doi.org/10.4304/jcp.8.4.943-950

Huang, W., Webster, D., Wood, D., & Ishaya, T. (2006). An intelligent semantic e-learning framework using context-aware Semantic Web technologies. British Journal of Educational Technology, 37(3), 351–373. https://doi.org/10.1111/j.1467-8535.2006.00610.x

Huet, A., Pinquié, R., Véron, P., Mallet, A., & Segonds, F. (2021). CACDA: A knowledge graph for a context-aware cognitive design assistant. Computers in Industry, 125, 103377. https://doi.org/10.1016/j.compind.2020.103377

Jaroucheh, Z., Liu, X., & Smith, S. (2012). An approach to domain-based scalable context management architecture in pervasive environments. Personal and Ubiquitous Computing, 16(6), 741–755. https://doi.org/10.1007/s00779-011-0422-0

Jun, L., Yi, B. Y., Xun, C. S., Ping, T. X., & Jian, L. (2004). FollowMe: On Research of Pluggable Infrastructure for Context-Awareness. 20th International Conference on Advanced Information Networking and Applications - Volume 1 (AINA’06), 199–204. https://doi.org/10.1109/AINA.2006.182

Jung, E., Lee, H. J., & Lee, J. W. (2007). Ontology-based context modeling and reasoning for U-HealthCare.pdf.crdownload, (8), 1262–1270

Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature reviews in Software Engineering Version 2.3. Engineering, 45(4ve), 1051. https://doi.org/10.1145/1134285.1134500

Li, P.-S., Liu, A., & Zhou, P.-C. (2014). Context Reasoning for Smart Homes using Case-Based Reasoning. Ieee, 6–7.

Liu, Y., Seet, B.-C., & Al-Anbuky, A. (2013). An Ontology-Based Context Model for Wireless Sensor Network (WSN) Management in the Internet of Things. Journal of Sensor and Actuator Networks, 2(4), 653–674. https://doi.org/10.3390/jsan2040653

Michalakis, K., Christodoulou, Y., Caridakis, G., Voutos, Y., & Mylonas, P. (2021). A Context-Aware Middleware for Context Modeling and Reasoning: A Case-Study in Smart Cultural Spaces. Applied Sciences, 11(13), 5770. https://doi.org/10.3390/app11135770

Moore, P., Hu, B., Zhu, X., Campbell, W., & Ratcliffe, M. (2007). A Survey of Context Modeling for Pervasive Cooperative Learning. 2007 First IEEE International Symposium on Information Technologies and Applications in Education, K5-1-K5-6. https://doi.org/10.1109/ISITAE.2007.4409367

Nazir, M., Haque, H. M. U., & Saleem, K. (2022). A semantic knowledge based context-aware formalism for smart border surveillance system. Mobile Networks and Applications, 1-13.

Oliveira, P., & Rocha, J. (2013). Semantic annotation tools survey. Proceedings of the 2013 IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013, 301–307. https://doi.org/10.1109/CIDM.2013.6597251

Paganelli, Federica, & Giuli, D. (2011). An ontology-based system for context-aware and configurable services to support home-based continuous care. IEEE Transactions on Information Technology in Biomedicine, 15(2), 324–333. https://doi.org/10.1109/TITB.2010.2091649

Perera, C., Member, S., Zaslavsky, A., & Christen, P. (2014). Context Aware Computing for The Internet of Things : A Survey. IEEE COMMUNICATIONS SURVEYS & TUTORIALS, X(X), 1–41.

Petticrew, Mark and Roberts, H. (2006). Beelmann, Petticrew, Roberts - 2006 - Systematic reviews in the social sciences. A practical guide. https://doi.org/10.1027/1016-9040.11.3.244

Pradeep, P., & Krishnamoorthy, S. (2019). The MOM of Context-Aware Systems : A Survey. Computer Communications, 137 (November 2018), 44–69. https://doi.org/10.1016/j.comcom.2019.02.002

Rakib, A., & Uddin, I. (2019). An Efficient Rule-Based Distributed Reasoning Framework for Resource-bounded Systems. Mobile Networks and Applications, 24(1), 82–99. https://doi.org/10.1007/s11036-018-1140-x

Razzaq, M. A., Villalonga, C., Lee, S., Akhtar, U., Ali, M., Kim, E. S., … Khan, W. A. (2017). mlCAF: Multi-level cross-domain semantic context fusioning for behavior identification. Sensors (Switzerland), 17(10), 1–25. https://doi.org/10.3390/s17102433

Rhayem, A., Mhiri, M. B. A., Drira, K., Tazi, S., & Gargouri, F. (2021). A semantic‐enabled and context‐aware monitoring system for the internet of medical things. Expert Systems, 38(2), e12629. https://doi.org/10.1111/exsy.12629

Ricquebourg, V., Durand, D., Menga, D., Marhic, B., Delahoche, L., Logé, C., & Jolly-Desodt, A. M. (2007). Context inferring in the smart home: An SWRL approach. Proceedings - 21st International Conference on Advanced Information Networking and Applications Workshops/Symposia, AINAW’07, 1(iv), 290–295. https://doi.org/10.1109/AINAW.2007.130

Robiul Hoque, M., Humayun Kabir, M., Thapa, K., & Yang, S. H. (2015). Ontology-based context modeling to facilitate reasoning in a context-aware system: A case study for the smart home. International Journal of Smart Home, 9(9), 151–156. https://doi.org/10.14257/ijsh.2015.9.9.16

Roussaki, I., Strimpakou, M., Pils, C., Kalatzis, N., & Anagnostou, M. (2006). Hybrid context modeling: A location-based scheme using ontologies. Proceedings - Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2006, 2006, 2–7. https://doi.org/10.1109/PERCOMW.2006.65

Scuturici, V.-M., Ejigu, D., Chaari, T., & Laforest, F. (2007). A comprehensive approach to model and use context for adapting applications in pervasive environments. Journal of Systems and Software, 80(12), 1973–1992. https://doi.org/10.1016/j.jss.2007.03.010

Syed, M. H., Huy, T. Q. B., & Chung, S. T. (2022). Context-Aware Explainable Recommendation Based on Domain Knowledge Graph. Big Data and Cognitive Computing, 6(1), 11. https://doi.org/10.3390/bdcc6010011

Truong, B. A., Lee, Y. K., & Lee, S. Y. (2005). Modeling and reasoning about uncertainty in context-aware systems. Proceedings - ICEBE 2005: IEEE International Conference on e-Business Engineering, 2005, 102–109. https://doi.org/10.1109/ICEBE.2005.90

Xiao, H., & Zou, Y. (2010). An Approach for Context-aware Service Discovery and Recommendation. {IEEE} International Conference on Web Services. Retrieved from http://www.computer.org/portal/web/csdl/doi/10.1109/ICWS.2010.95

Yang, S. J. H., Zhang, J., & Chen, I. Y. L. (2008). A JESS-enabled context elicitation system for providing context-aware Web services. Expert Systems with Applications, 34(4), 2254–2266. https://doi.org/10.1016/j.eswa.2007.03.008




Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

 Revista indizada en: Scopus, Web of Science (Emerging Sources Citation Index), DIALNET, EBSCO (Academic Search Complete, 
Academic Search Premier, Academic Search Ultimate, Fuente Académica Plus), PROQUEST (Library and Information Science
Abstracts, Library Science), REDIB, CLASE, BIBLAT, INFOBILA, Ulrichs Web, Latindex, DOAJ, Index Copernicus, JournalsTOC,
ERIH Plus, E-LIS, MIAR, e-Libros, BASE,
Google Scholar, y otros.


                           Redes Sociales
 
              
  
Indicadores de impacto según Google Scholar:
Índice h: 8; Índice i10: 3
Revista certificada por el CITMA

 

           Revista. Bibliotecas. Anales de investigación by Biblioteca Nacional de Cuba José Martí is licensed under aCreative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.  

Creado a partir de la obra en anales.bnjm.cu

 ISSN: 0006-176X, EISSN: 1683-8947   
                               Licencia de Creative Commons