Intelligent predictive maintenance: a bibliometric approach through the SCOPUS database

Raúl Torres-Sainz, María Rosa de-Zayas-Pérez, Carlos Alberto Trinchet-Varela, Lidia María Pérez-Vallejo, Roberto Pérez Rodríguez

Resumen


Intelligent predictive maintenance is an important technique to increase the efficiency and safety of the industry, since it allows detecting and preventing machine problems before they occur. Objective: This study aims to evaluate the scientific production and its evolution over time by means of a bibliometric analysis. Methodology: The search was carried out in the Scopus and WoS databases. The R package Bibliometrix was used to determine the production, impact and collaboration indicators. Statistical software such as SPSS and UCINET were also used to analyze the main approaches. Results: 24 publications were found between 2011 and 2022, with authors Li. Z and Chiu. Y-C being the most relevant in the field. Topics identified as relevant but underdeveloped include "Deep Learning", "Artificial Intelligence", "Big Data Analytics", "Predictive Maintenance", "Industry 4.0" and "Intelligent Predictive Maintenance". Conclusions: As future perspectives in the research, the incorporation of additional techniques such as Bayesian networks, hidden Markov models, and Monte Carlo simulation have been identified. Also, the integration of historical machine operation and failure and maintenance data, along with condition monitoring data, into the data analysis has been proposed. Value: The findings of the study were presented with the intention of being useful to the scientific community.


Palabras clave


Bibliometrics; Bibliometrix; intelligent predictive maintenance; artificial intelligence

Texto completo:

PDF

Referencias


Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Applied Sciences, 12(16). https://doi.org/10.3390/app12168081

Agbo, F. J., Oyelere, S. S., Suhonen, J., & Tukiainen, M. J. S. L. E. (2021). Scientific production and thematic breakthroughs in smart learning environments: a bibliometric analysis. 8(1), 1-25. https://doi.org/https://doi.org/10.1186/s40561-020-00145-4

Andalia, R., Rodríguez-Labrada, R., & Castells, M. (2010). Scopus: la mayor base de datos de literatura científica arbitrada al alcance de los países subdesarrollados. ACIMED, 21, 270-282. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352010000300002

Aremu, O. O., Palau, A. S., Parlikad, A. K., Hyland-Wood, D., & McAree, P. R. (2018). Structuring Data for Intelligent Predictive Maintenance in Asset Management. IFAC-PapersOnLine, 51(11), 514-519. https://doi.org/10.1016/j.ifacol.2018.08.370

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/https://doi.org/10.1016/j.joi.2017.08.007

Bakdi, A., Kristensen, N. B., & Stakkeland, M. (2022). Multiple Instance Learning With Random Forest for Event Logs Analysis and Predictive Maintenance in Ship Electric Propulsion System [Article]. IEEE Transactions on Industrial Informatics, 18(11), 7718-7728. https://doi.org/10.1109/TII.2022.3144177

Buabeng, A., Simons, A., Frimpong, N. K., & Ziggah, Y. Y. (2021). Hybrid Intelligent Predictive Maintenance Model for Multiclass Fault Classication. https://doi.org/https://doi.org/10.21203/rs.3.rs-600110/v1

Cabeza-Ramírez, L. J., Sánchez Cañizares, S. M., & Fuentes-García, F. J. (2020). De la bibliometría al emprendimiento: un estudio de estudios. Revista Española de Documentación Científica, 43(3), e268. https://doi.org/10.3989/redc.2020.3.1702

Cazacu, E., Petrescu, L. G., & Ioniță, V. (2022). Smart Predictive Maintenance Device for Critical In-Service Motors [Article]. Energies, 15(12), Article 4283. https://doi.org/10.3390/en15124283

Esfahani, H., Tavasoli, K., Jabbarzadeh, A. J. I. J. o. D., & Science, N. (2019). Big data and social media: A scientometrics analysis. 3(3), 145-164. https://doi.org/10.5267/j.ijdns.2019.2.007

Farhan Naeem, M., Hashmi, K., Rahman Kashif, S. A., Khan, M. M., Alghaythi, M. L., Aymen, F., Ali, S. G., AboRas, K. M., & Ben Dhaou, I. (2022). A novel method for life estimation of power transformers using fuzzy logic systems: An intelligent predictive maintenance approach [Article]. Frontiers in Energy Research, 10, Article 977665. https://doi.org/10.3389/fenrg.2022.977665

González-Alcaide, G., & Gómez-Ferri, J. (2014). La colaboración científica: principales líneas de investigación y retos de futuro. Revista Española de Documentación Científica, 37(4), e062. https://doi.org/10.3989/redc.2014.4.1186

Grubisic, V. V. F., J. P. F, A., & Z, S.-A. (2020, 7-9 Oct. 2020). A Review on Intelligent Predictive Maintenance: Bibliometric analysis and new research directions. 2020 International Conference on Control, Automation and Diagnosis (ICCAD), doi.org/10.1109/ICCAD49821.2020.9260504

Jiang, Y., Dai, P., Fang, P., Zhong, R. Y., & Cao, X. (2022). Electrical-STGCN: An Electrical Spatio-Temporal Graph Convolutional Network for Intelligent Predictive Maintenance [Article]. IEEE Transactions on Industrial Informatics, 18(12), 8509-8518. https://doi.org/10.1109/TII.2022.3143148

Keleko, A. T., Kamsu-Foguem, B., Ngouna, R. H., & Tongne, A. (2022). Artificial intelligence and real-time predictive maintenance in industry 4.0: a bibliometric analysis. AI and Ethics, 2(4), 553-577. https://doi.org/10.1007/s43681-021-00132-6

Li, Z., Wang, Y., & Wang, K. S. (2017). Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario [Article]. Advances in Manufacturing, 5(4), 377-387. https://doi.org/10.1007/s40436-017-0203-8

Lima, A. L. d. C. D., Aranha, V. M., Carvalho, C. J. d. L., & Nascimento, E. G. S. (2021). Smart predictive maintenance for high-performance computing systems: a literature review. The Journal of Supercomputing, 77(11), 13494-13513. https://doi.org/10.1007/s11227-021-03811-7

Liu, C., Zhu, H., Tang, D., Nie, Q., Zhou, T., Wang, L., & Song, Y. (2022). Probing an intelligent predictive maintenance approach with deep learning and augmented reality for machine tools in IoT-enabled manufacturing [Article]. Robotics and Computer-Integrated Manufacturing, 77, Article 102357. https://doi.org/10.1016/j.rcim.2022.102357

Lv, Y., Zhou, Q., Li, Y., & Li, W. (2021). A predictive maintenance system for multi-granularity faults based on AdaBelief-BP neural network and fuzzy decision making [Article]. Advanced Engineering Informatics, 49, Article 101318. https://doi.org/10.1016/j.aei.2021.101318

Maktoubian, J., Taskhiri, M. S., & Turner, P. (2021). Intelligent Predictive Maintenance (IPdM) in Forestry: A Review of Challenges and Opportunities. Forests, 12(11). https://doi.org/10.3390/f12111495

Mavhungu, M., & Didam-Markus, E. (2020). Intelligent Predictive Maintenance of Electric Trains in South Africa. 21(2). https://doi.org/DOI 10.5013/IJSSST.a.21.02.32

Mesa-Bedoya, J. C., González-Parias, C. H., & Zeraoui, Z. (2023). Evolución y tendencias en investigación sobre paradiplomacia. Un análisis bibliométrico. Revista Española de Documentación Científica, 46(1), e351. https://doi.org/10.3989/redc.2023.1.1960

Murillo-Gonzalez, D., Zapata, R., & López, O. (2023). Análisis de los perfiles de investigadores de Panamá e indicadores bibliométricos de Google Scholar. Revista Española de Documentación Científica, 46(1), e349. https://doi.org/10.3989/redc.2023.1.1962

Nazara, K. Y. (2022). Perancangan Smart Predictive Maintenance untuk Mesin Produksi Seminar Nasional Official Statistics, 1. https://doi.org/https://doi.org/10.34123/semnasoffstat.v2022i1.1575

Pech, M., Vrchota, J., & Bednář, J. (2021). Predictive Maintenance and Intelligent Sensors in Smart Factory: Review. Sensors, 21(4). https://doi.org/10.3390/s21041470

Shcherbakov, M., & Sai, C. (2022). A Hybrid Deep Learning Framework for Intelligent Predictive Maintenance of Cyber-physical Systems [Article]. ACM Transactions on Cyber-Physical Systems, 6(2), Article 3486252. https://doi.org/10.1145/3486252

Shi, F. (2021). Bibliometric Analysis and Visualization of Bayesian Network Application in Safety Field. 7(6), 57-70. https://doi.org/ 10.6919/ICJE.202106_7(6).0009




Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

 Revista indizada en: Scopus, Web of Science (Emerging Sources Citation Index), DIALNET, EBSCO (Academic Search Complete, 
Academic Search Premier, Academic Search Ultimate, Fuente Académica Plus), PROQUEST (Library and Information Science
Abstracts, Library Science), REDIB, CLASE, BIBLAT, INFOBILA, Ulrichs Web, Latindex, DOAJ, Index Copernicus, JournalsTOC,
ERIH Plus, E-LIS, MIAR, e-Libros, BASE,
Google Scholar, y otros.


                           Redes Sociales
 
              
  
Indicadores de impacto según Google Scholar:
Índice h: 8; Índice i10: 3
Revista certificada por el CITMA

 

           Revista. Bibliotecas. Anales de investigación by Biblioteca Nacional de Cuba José Martí is licensed under aCreative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.  

Creado a partir de la obra en anales.bnjm.cu

 ISSN: 0006-176X, EISSN: 1683-8947   
                               Licencia de Creative Commons